Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Curr Med Sci ; 43(2): 261-267, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36932303

RESUMO

OBJECTIVE: Charcot-Marie-Tooth disease (CMT) severely affects patient activity, and may cause disability. However, no clinical treatment is available to reverse the disease course. The combination of CRISPR/Cas9 and iPSCs may have therapeutic potential against nervous diseases, such as CMT. METHODS: In the present study, the skin fibroblasts of CMT type 2D (CMT2D) patients with the c.880G>A heterozygous nucleotide mutation in the GARS gene were reprogrammed into iPSCs using three plasmids (pCXLE-hSK, pCXLE-hUL and pCXLE-hOCT3/4-shp5-F). Then, CRISPR/Cas9 technology was used to repair the mutated gene sites at the iPSC level. RESULTS: An iPSC line derived from the GARS (G294R) family with fibular atrophy was successfully induced, and the mutated gene loci were repaired at the iPSC level using CRISPR/Cas9 technology. These findings lay the foundation for future research on drug screening and cell therapy. CONCLUSION: iPSCs can differentiate into different cell types, and originate from autologous cells. Therefore, they are promising for the development of autologous cell therapies for degenerative diseases. The combination of CRISPR/Cas9 and iPSCs may open a new avenue for the treatment of nervous diseases, such as CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Células-Tronco Pluripotentes Induzidas , Reparo Gênico Alvo-Dirigido , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/metabolismo , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Reparo Gênico Alvo-Dirigido/métodos
2.
Cancer Res Treat ; 54(1): 40-53, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34044476

RESUMO

PURPOSE: We investigated the feasibility of using an anatomically localized, target-enriched liquid biopsy (TLB) in mouse models of lung cancer. MATERIALS AND METHODS: After irradiating xenograft mouse with human lung cancer cell lines, H1299 (NRAS proto-oncogene, GTPase [NRAS] Q61K) and HCC827 (epidermal growth factor receptor [EGFR] E746-750del), circulating (cell-free) tumor DNA (ctDNA) levels were monitored with quantitative polymerase chain reaction on human long interspersed nuclear element-1 and cell line-specific mutations. We checked dose-dependency at 6, 12, or 18 Gy to each tumor-bearing mouse leg using 6-MV photon beams. We also analyzed ctDNA of lung cancer patients by LiquidSCAN, a targeted deep sequencing to validated the clinical performances of TLB method. RESULTS: Irradiation could enhance the detection sensitivity of NRAS Q61K in the plasma sample of H1299-xenograft mouse to 4.5- fold. While cell-free DNA (cfDNA) level was not changed at 6 Gy, ctDNA level was increased upon irradiation. Using double-xenograft mouse with H1299 and HCC827, ctDNA polymerase chain reaction analysis with local irradiation in each region could specify mutation type matched to transplanted cell types, proposing an anatomically localized, TLB. Furthermore, when we performed targeted deep sequencing of cfDNA to monitor ctDNA level in 11 patients with lung cancer who underwent radiotherapy, the average ctDNA level was increased within a week after the start of radiotherapy. CONCLUSION: TLB using irradiation could temporarily amplify ctDNA release in xenograft mouse and lung cancer patients, which enables us to develop theragnostic method for cancer patients with accurate ctDNA detection.


Assuntos
DNA Tumoral Circulante/sangue , Biópsia Líquida/métodos , Neoplasias Pulmonares/genética , Reparo Gênico Alvo-Dirigido/métodos , Animais , Biomarcadores Tumorais/genética , Estudos de Viabilidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Microambiente Tumoral
3.
Cancer Treat Rev ; 101: 102310, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34757307

RESUMO

PURPOSE: Current guidelines recommend somatic genomic sequencing for patients with advanced pancreatic cancer to identify targetable alterations amenable to targeted therapy. The benefit of somatic genomic sequencing in pancreatic cancer remains unclear. This study aims to assess the evidence supporting genomic sequencing to inform treatment selection for patients with advanced pancreatic cancer. METHODS: A systematic review identified prospective studies of exocrine pancreatic cancer patients published before August 2020 which conducted genomic sequencing to inform treatment selection. Outcomes of interest included the proportion of patients with targetable alterations, the proportion that received targeted treatments, and the impact of targeted treatments on overall survival. Meta-analysis for proportions and hazard ratios was performed using Dersimonian and Laird random effect models. RESULTS: 19 studies (representing 2048 pancreatic cancer patients) were included. Sequencing methodologies, definitions of targetable alterations, and approaches treatment selection varied across studies and were incompletely reported. 590 of 1382 sequenced patients harboured a targetable alteration (random effects meta-analysis estimate of the proportion 0.46, 95% confidence interval 0.32-0.61). The proportion of patients with targetable alterations was highly heterogenous between studies (I2 93%, P < 0.001). 91 of 1390 patients received a matched therapy based on their targetable alterations (random effects meta-analysis estimate of the proportion 0.12, 95% CI 0.06-0.23). One observational study reported an overall survival benefit of matched therapy. CONCLUSIONS: Genomic sequencing frequently identifies targetable alterations in pancreatic cancers. Further research is required to standardize the definitions of targetable alterations, the approach to treatment matching, and quantify the benefit of targeted therapy.


Assuntos
Terapia Genética/métodos , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas , Análise de Sequência de DNA/métodos , Reparo Gênico Alvo-Dirigido/métodos , Humanos , Estadiamento de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Seleção de Pacientes
4.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34369389

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder for which only symptomatic treatment with limited benefits is available. AS is caused by mutations affecting the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene. Previous studies showed that the silenced paternal Ube3a gene can be activated by targeting the antisense Ube3a-ATS transcript. We investigated antisense oligonucleotide-induced (ASO-induced) Ube3a-ATS degradation and its ability to induce UBE3A reinstatement and rescue of AS phenotypes in an established Ube3a mouse model. We found that a single intracerebroventricular injection of ASOs at postnatal day 1 (P1) or P21 in AS mice resulted in potent and specific UBE3A reinstatement in the brain, with levels up to 74% of WT levels in the cortex and a full rescue of sensitivity to audiogenic seizures. AS mice treated with ASO at P1 also showed rescue of established AS phenotypes, such as open field and forced swim test behaviors, and significant improvement on the reversed rotarod. Hippocampal plasticity of treated AS mice was comparable to WT but not significantly different from PBS-treated AS mice. No rescue was observed for the marble burying and nest building phenotypes. Our findings highlight the promise of ASO-mediated reactivation of UBE3A as a disease-modifying treatment for AS.


Assuntos
Síndrome de Angelman , Oligonucleotídeos Antissenso/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Variação Biológica da População , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Inativação Gênica , Camundongos , Reparo Gênico Alvo-Dirigido/métodos , Resultado do Tratamento
5.
Int J Biol Sci ; 17(8): 1940-1952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34131397

RESUMO

There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.


Assuntos
Antagomirs/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs , Neoplasias Gástricas , Reparo Gênico Alvo-Dirigido/métodos , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/terapia
6.
Nat Commun ; 12(1): 472, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473139

RESUMO

Targeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may enable the treatment of genetic diseases of the blood and immune system. It is now possible to correct mutations at high frequencies in HSPCs by combining CRISPR/Cas9 with homologous DNA donors. Because of the precision of gene correction, these approaches preclude clonal tracking of gene-targeted HSPCs. Here, we describe Tracking Recombination Alleles in Clonal Engraftment using sequencing (TRACE-Seq), a methodology that utilizes barcoded AAV6 donor template libraries, carrying in-frame silent mutations or semi-randomized nucleotides outside the coding region, to track the in vivo lineage contribution of gene-targeted HSPC clones. By targeting the HBB gene with an AAV6 donor template library consisting of ~20,000 possible unique exon 1 in-frame silent mutations, we track the hematopoietic reconstitution of HBB targeted myeloid-skewed, lymphoid-skewed, and balanced multi-lineage repopulating human HSPC clones in mice. We anticipate this methodology could potentially be used for HSPC clonal tracking of Cas9 RNP and AAV6-mediated gene targeting outcomes in translational and basic research settings.


Assuntos
Alelos , Células Clonais , Marcação de Genes/métodos , Células-Tronco Hematopoéticas , Recombinação Genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Edição de Genes/métodos , Terapia Genética/métodos , Humanos , Camundongos , Mutação , Reparo Gênico Alvo-Dirigido/métodos
7.
Nat Commun ; 11(1): 5352, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33097693

RESUMO

Prime editing is a recent genome editing technology using fusion proteins of Cas9-nickase and reverse transcriptase, that holds promise to correct the vast majority of genetic defects. Here, we develop prime editing for primary adult stem cells grown in organoid culture models. First, we generate precise in-frame deletions in the gene encoding ß-catenin (CTNNB1) that result in proliferation independent of Wnt-stimuli, mimicking a mechanism of the development of liver cancer. Moreover, prime editing functionally recovers disease-causing mutations in intestinal organoids from patients with DGAT1-deficiency and liver organoids from a patient with Wilson disease (ATP7B). Prime editing is as efficient in 3D grown organoids as in 2D grown cell lines and offers greater precision than Cas9-mediated homology directed repair (HDR). Base editing remains more reliable than prime editing but is restricted to a subgroup of pathogenic mutations. Whole-genome sequencing of four prime-edited clonal organoid lines reveals absence of genome-wide off-target effects underscoring therapeutic potential of this versatile and precise gene editing strategy.


Assuntos
Edição de Genes/métodos , Organoides/metabolismo , beta Catenina/genética , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , ATPases Transportadoras de Cobre/genética , Desoxirribonuclease I/metabolismo , Diacilglicerol O-Aciltransferase/genética , Células HEK293 , Degeneração Hepatolenticular/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Reparo de DNA por Recombinação , Células-Tronco , Reparo Gênico Alvo-Dirigido/métodos
8.
Int J Gynecol Cancer ; 30(10): 1608-1618, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32928926

RESUMO

The clinical development of poly-(ADP)-ribose polymerase inhibitors (PARPi) began with the treatment of ovarian cancer patients harboring BRCA1/2 mutations and continues to be expanded to other gynecological cancers. Furthermore, The Cancer Genome Atlas (TCGA) analysis of endometrial and cervical cancers offered rationale that PARPi may be an option for treatment based on the molecular profiles of these cancer types. This review summarizes the current indications of PARPi, such as its role in the treatment and maintenance of recurrent ovarian cancer and for first-line maintenance therapy in advanced ovarian cancer. We also outline new concepts for PARPi therapy in other gynecological cancers such as endometrial and cervical cancers based on recent clinical data. Finally, we present potential future directions to continue exploring the world of PARPi resistance and combining PARPi with other therapies.


Assuntos
Neoplasias do Endométrio/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Intervalo Livre de Progressão , Reparo Gênico Alvo-Dirigido/métodos
9.
Nat Biotechnol ; 38(9): 1037-1043, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632303

RESUMO

Base editors, including adenine base editors (ABEs)1 and cytosine base editors (CBEs)2,3, are widely used to induce point mutations. However, determining whether a specific nucleotide in its genomic context can be edited requires time-consuming experiments. Furthermore, when the editable window contains multiple target nucleotides, various genotypic products can be generated. To develop computational tools to predict base-editing efficiency and outcome product frequencies, we first evaluated the efficiencies of an ABE and a CBE and the outcome product frequencies at 13,504 and 14,157 target sequences, respectively, in human cells. We found that there were only modest asymmetric correlations between the activities of the base editors and Cas9 at the same targets. Using deep-learning-based computational modeling, we built tools to predict the efficiencies and outcome frequencies of ABE- and CBE-directed editing at any target sequence, with Pearson correlations ranging from 0.50 to 0.95. These tools and results will facilitate modeling and therapeutic correction of genetic diseases by base editing.


Assuntos
Adenina , Citosina , Edição de Genes/métodos , Reparo Gênico Alvo-Dirigido/métodos , Aminoidrolases/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Citosina Desaminase/metabolismo , Engenharia Genética , Genoma Humano/genética , Células HEK293 , Humanos , Mutação Puntual , RNA Guia de Cinetoplastídeos/genética
10.
Int J Mol Sci ; 21(11)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471232

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease caused by the death of motor neurons in the spinal cord and brainstem. ALS has a diverse genetic origin; at least 20 genes have been shown to be related to ALS. Most familial and sporadic cases of ALS are caused by variants of the SOD1, C9orf72, FUS, and TARDBP genes. Genome editing using clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9 (CRISPR/Cas9) can provide insights into the underlying genetics and pathophysiology of ALS. By correcting common mutations associated with ALS in animal models and patient-derived induced pluripotent stem cells (iPSCs), CRISPR/Cas9 has been used to verify the effects of ALS-associated mutations and observe phenotype differences between patient-derived and gene-corrected iPSCs. This technology has also been used to create mutations to investigate the pathophysiology of ALS. Here, we review recent studies that have used CRISPR/Cas9 to understand the genetic underpinnings of ALS.


Assuntos
Esclerose Amiotrófica Lateral/terapia , Sistemas CRISPR-Cas , Reparo Gênico Alvo-Dirigido/métodos , Esclerose Amiotrófica Lateral/genética , Animais , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Humanos , Proteína FUS de Ligação a RNA/genética , Superóxido Dismutase-1/genética
11.
Theranostics ; 10(8): 3546-3561, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32206107

RESUMO

Sonogenetics is a promising approach for in vivo neuromodulation using ultrasound (US) to non-invasively stimulate cells in deep tissue. However, sonogenetics requires accurate transduction of US-responsive proteins into target cells. Here, we introduce a non-invasive and non-viral approach for intracerebral gene delivery. This approach utilizes temporary ultrasonic disruption of the blood-brain barrier (BBB) to transfect neurons at specific sites in the brain via DNA that encodes engineered US-responsive protein (murine Prestin (N7T, N308S))-loaded microbubbles (pPrestin-MBs). Prestin is a transmembrane protein that exists in the mammalian auditory system and functions as an electromechanical transducer. We further improved the US sensitivity of Prestin by introducing specific amino acid substitutions that frequently occur in sonar species into the mouse Prestin protein. We demonstrated this concept in mice using US with pPrestin-MBs to non-invasively modify and activate neurons within the brain for spatiotemporal neuromodulation. Method: MBs composed of cationic phospholipid and C3F8 loaded with mouse Prestin plasmid (pPrestin) via electrostatic interactions. The mean concentration and size of the pPrestin-MBs were (16.0 ± 0.2) × 109 MBs/mL and 1.1 ± 0.2 µm, respectively. SH-SY5Y neuron-like cells and C57BL mice were used in this study. We evaluated the gene transfection efficiency and BBB-opening region resulting from pPrestin-MBs with 1-MHz US (pressure = 0.1-0.5 MPa, cycle = 50-10000, pulse repetition frequency (PRF): 0.5-5 Hz, sonication time = 60 s) using green fluorescence protein (Venus) and Evans blue staining. Results: The maximum pPrestin expression with the highest cell viability occurred at a pressure of 0.5 MPa, cycle number of 5000, and PRF of 1 Hz. The cellular transfection rate with pPrestin-MBs and US was 20.2 ± 2.5%, which was 1.5-fold higher than that of commercial transfection agents (LT-1). In vivo data suggested that the most profound expression of pPrestin occurred at 2 days after performing pPrestin-MBs with US (0.5 MPa, 240 s sonication time). In addition, no server erythrocyte extravasations and apoptosis cells were observed at US-sonicated region. We further found that with 0.5-MHz US stimulation, cells with Prestin expression were 6-fold more likely to exhibit c-Fos staining than cells without Prestin expression. Conclusion: Successful activation of Prestin-expressing neurons suggests that this technology provides non-invasive and spatially precise selective modulation of one or multiple specific brain regions.


Assuntos
Encéfalo/metabolismo , Terapia Genética/instrumentação , Engenharia de Proteínas/métodos , Ondas Ultrassônicas/efeitos adversos , Ultrassonografia/instrumentação , Animais , Vias Auditivas/metabolismo , Vias Auditivas/fisiopatologia , Barreira Hematoencefálica/metabolismo , Cátions/metabolismo , DNA/metabolismo , Técnicas de Transferência de Genes/instrumentação , Camundongos , Camundongos Endogâmicos C57BL , Microbolhas , Proteínas Motores Moleculares/metabolismo , Neurotransmissores/farmacologia , Plasmídeos/metabolismo , Sonicação , Reparo Gênico Alvo-Dirigido/métodos , Transfecção
12.
Nat Commun ; 11(1): 482, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980606

RESUMO

Supplementing wildtype copies of functionally defective genes with adeno-associated virus (AAV) is a strategy being explored clinically for various retinal dystrophies. However, the low cargo limit of this vector allows its use in only a fraction of patients with mutations in relatively small pathogenic genes. To overcome this issue, we developed a single AAV platform that allows local replacement of a mutated sequence with its wildtype counterpart, based on combined CRISPR-Cas9 and micro-homology-mediated end-joining (MMEJ). In blind mice, the mutation replacement rescued approximately 10% of photoreceptors, resulting in an improvement in light sensitivity and an increase in visual acuity. These effects were comparable to restoration mediated by gene supplementation, which targets a greater number of photoreceptors. This strategy may be applied for the treatment of inherited disorders caused by mutations in larger genes, for which conventional gene supplementation therapy is not currently feasible.


Assuntos
Dependovirus/genética , Edição de Genes/métodos , Células Fotorreceptoras de Vertebrados/fisiologia , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Animais , Sistemas CRISPR-Cas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Reparo do DNA por Junção de Extremidades , Proteínas do Olho/genética , Terapia Genética/métodos , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Distrofias Retinianas/fisiopatologia , Reparo Gênico Alvo-Dirigido/métodos , Transducina/deficiência , Transducina/genética , Acuidade Visual/genética , Acuidade Visual/fisiologia
13.
Protein Cell ; 11(1): 1-22, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31037510

RESUMO

Cockayne syndrome (CS) is a rare autosomal recessive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sunlight, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limitations of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapitulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compliant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a foundation for the development of novel therapeutic strategies to treat CS.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Edição de Genes/métodos , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Reparo Gênico Alvo-Dirigido/métodos , Senilidade Prematura/patologia , Senilidade Prematura/terapia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Síndrome de Cockayne/patologia , Síndrome de Cockayne/terapia , Reparo do DNA , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Transcriptoma
14.
ACS Chem Biol ; 15(1): 93-102, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31829624

RESUMO

The adenine glycosylase MutY selectively initiates repair of OG:A lesions and, by comparison, avoids G:A mispairs. The ability to distinguish these closely related substrates relies on the C-terminal domain of MutY, which structurally resembles MutT. To understand the mechanism for substrate specificity, we crystallized MutY in complex with DNA containing G across from the high-affinity azaribose transition state analogue. Our structure shows that G is accommodated by the OG site and highlights the role of a serine residue in OG versus G discrimination. The functional significance of Ser308 and its neighboring residues was evaluated by mutational analysis, revealing the critical importance of a ß loop in the C-terminal domain for mutation suppression in cells, and biochemical performance in vitro. This loop comprising residues Phe307, Ser308, and His309 (Geobacillus stearothermophilus sequence positions) is conserved in MutY but absent in MutT and other DNA repair enzymes and may therefore serve as a MutY-specific target exploitable by chemical biological probes.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA/química , Reparo Gênico Alvo-Dirigido/métodos , Sequência de Aminoácidos , Pareamento Incorreto de Bases , Domínio Catalítico , Guanina/química , Cinética , Conformação Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Med Sci (Paris) ; 36 Hors série n° 2: 17-21, 2020 Dec.
Artigo em Francês | MEDLINE | ID: mdl-33427631

RESUMO

Calpainopathies are inherited limb-girdle muscular dystrophies, most often following an autosomal recessive (AR) transmission. Autosomal dominant (AD) forms with less severe presentation are increasingly reported. Calpainopathies with autosomal recessive (AR) mutations of the calpain3 gene (CAPN3) are associated with limb girdle muscular dystrophy type R1 (LGMD-R1, OMIM 253600) also referred to as LGMD-2A according to the old nomenclature. LGMD-R1 is the commonest form of all LGMDs, with an estimated prevalence of 10 to 70 cases per million inhabitants, that is a cohort of between 670 and 4,200 patients in France theoritically. Patients present a symmetrical proximal axial myopathy manifesting itself between the first and second decade. The clinical course is variable. The level of Creatine- Kinase (CK) is usually high and there is no cardiac involvement. From a therapeutic perspective, the autosomal recessive form of calpainopathy is quite suitable to gene replacement strategies; the viability of recombinant AAV-mediated calpain 3 transfer has been demonstrated in animal models and clinical trials are expected in the coming years. Meanwhile, natural history studies are needed to prepare for future clinical trials.


TITLE: Calpaïnopathies - État des lieux et perspectives thérapeutiques. ABSTRACT: Les calpaïnopathies sont des dystrophies musculaires des ceintures héréditaires, le plus souvent avec une transmission autosomique récessive (AR). Des formes autosomiques dominantes (AD) de présentation moins sévère sont de plus en plus rapportées. Les calpaïnopathies avec mutations autosomiques récessives du gène de la calpaïne 3 (CAPN3) sont associées à la dystrophie musculaire des ceintures de type R1 (OMIM 253600) ou LGMD-2A, selon l'ancienne nomenclature. La LGMD-R1 est la plus fréquente de toutes les formes de LGMD, sa prévalence étant estimée entre 10 et 70 cas par million d'habitants. Il existerait ainsi entre 670 et 4 200 patients atteints de LGMD-R1 en France. Les patients présentent une myopathie proximale symétrique et axiale se manifestant entre la première et la deuxième décennie. L'évolution est variable. Le taux de Créatine-Phospho-Kinase sérique est élevé et il n'y a pas d'atteinte cardiaque. Au niveau thérapeutique, la forme autosomique récessive de calpaïnopathie se prête à des stratégies de remplacement de gène. La viabilité d'un transfert de calpaïne 3 médié par un AAV recombinant a été démontrée dans des modèles animaux et un passage en clinique est attendu dans les prochaines années. En attendant, des études d'histoire naturelle sont nécessaires afin de préparer les futurs essais cliniques.


Assuntos
Calpaína/genética , Proteínas Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/terapia , Calpaína/deficiência , Diagnóstico Diferencial , França/epidemiologia , Humanos , Proteínas Musculares/deficiência , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Mutação , Fenótipo , Reparo Gênico Alvo-Dirigido/métodos , Reparo Gênico Alvo-Dirigido/tendências , Terapias em Estudo/métodos , Terapias em Estudo/tendências
16.
Nat Commun ; 10(1): 4439, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570731

RESUMO

Adeno-associated virus (AAV) vectors have shown promising results in preclinical models, but the genomic consequences of transduction with AAV vectors encoding CRISPR-Cas nucleases is still being examined. In this study, we observe high levels of AAV integration (up to 47%) into Cas9-induced double-strand breaks (DSBs) in therapeutically relevant genes in cultured murine neurons, mouse brain, muscle and cochlea. Genome-wide AAV mapping in mouse brain shows no overall increase of AAV integration except at the CRISPR/Cas9 target site. To allow detailed characterization of integration events we engineer a miniature AAV encoding a 465 bp lambda bacteriophage DNA (AAV-λ465), enabling sequencing of the entire integrated vector genome. The integration profile of AAV-465λ in cultured cells display both full-length and fragmented AAV genomes at Cas9 on-target sites. Our data indicate that AAV integration should be recognized as a common outcome for applications that utilize AAV for genome editing.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos , Integração Viral/genética , Animais , Bacteriófago lambda/genética , Encéfalo , Linhagem Celular , Mapeamento Cromossômico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cóclea , Endonucleases , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculos , Neurônios/virologia , Reparo Gênico Alvo-Dirigido/métodos , Resultado do Tratamento
17.
Int J Mol Sci ; 20(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366028

RESUMO

The CRISPR/Cas9 system (clustered regularly interspaced short palindromic repeat-associated protein 9) is a powerful genome-editing tool in animals, plants, and humans. This system has some advantages, such as a high on-target mutation rate (targeting efficiency), less cost, simplicity, and high-efficiency multiplex loci editing, over conventional genome editing tools, including meganucleases, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs). One of the crucial shortcomings of this system is unwanted mutations at off-target sites. We summarize and discuss different approaches, such as dCas9 and Cas9 paired nickase, to decrease the off-target effects in plants. According to studies, the most effective method to reduce unintended mutations is the use of ligand-dependent ribozymes called aptazymes. The single guide RNA (sgRNA)/ligand-dependent aptazyme strategy has helped researchers avoid unwanted mutations in human cells and can be used in plants as an alternative method to dramatically decrease the frequency of off-target mutations. We hope our concept provides a new, simple, and fast gene transformation and genome-editing approach, with advantages including reduced time and energy consumption, the avoidance of unwanted mutations, increased frequency of on-target changes, and no need for external forces or expensive equipment.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Melhoramento Vegetal/métodos , Reparo Gênico Alvo-Dirigido/métodos , Edição de Genes/normas , Magnoliopsida/genética , RNA Guia de Cinetoplastídeos/genética , Reparo Gênico Alvo-Dirigido/normas
18.
Medicina (Kaunas) ; 55(8)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357735

RESUMO

The upgraded knowledge of tumor biology and microenviroment provides information on differences in neoplastic and normal cells. Thus, the need to target these differences led to the development of novel molecules (targeted therapy) active against the neoplastic cells' inner workings. There are several types of targeted agents, including Small Molecules Inhibitors (SMIs), monoclonal antibodies (mAbs), interfering RNA (iRNA) molecules and microRNA. In the clinical practice, these new medicines generate a multilayered step in pharmacokinetics (PK), which encompasses a broad individual PK variability, and unpredictable outcomes according to the pharmacogenetics (PG) profile of the patient (e.g., cytochrome P450 enzyme), and to patient characteristics such as adherence to treatment and environmental factors. This review focuses on the use of targeted agents in-human phase I/II/III clinical trials in cancer-hematology. Thus, it outlines the up-to-date anticancer drugs suitable for targeted therapies and the most recent finding in pharmacogenomics related to drug response. Besides, a summary assessment of the genotyping costs has been discussed. Targeted therapy seems to be an effective and less toxic therapeutic approach in onco-hematology. The identification of individual PG profile should be a new resource for oncologists to make treatment decisions for the patients to minimize the toxicity and or inefficacy of therapy. This could allow the clinicians to evaluate benefits and restrictions, regarding costs and applicability, of the most suitable pharmacological approach for performing a tailor-made therapy.


Assuntos
Antineoplásicos/uso terapêutico , Reparo Gênico Alvo-Dirigido/métodos , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Humanos , MicroRNAs/farmacologia , MicroRNAs/uso terapêutico , Vírus Oncolíticos , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Literatura de Revisão como Assunto , Reparo Gênico Alvo-Dirigido/estatística & dados numéricos
19.
Hum Gene Ther ; 30(7): 841-854, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30760052

RESUMO

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3 is a neurodegenerative disorder caused by an abnormal repetition of a CAG codon in the MJD1 gene. This expansion translates into a long polyglutamine tract, leading to the misfolding of the mutant protein ataxin-3, which abnormally accumulates in the nucleus, thus leading to neurodegeneration in specific brain regions. No treatment able to modify the progression of the disease is available. However, it has previously been shown that specific silencing of mutant ataxin-3 by RNA interference with viral vectors is a promising therapeutic strategy for MJD. Nevertheless, reports of cytotoxic effects of this technology led to the safety profile of the previously tested lentiviral vectors encoding short hairpin (sh)RNAs (LV-shmutatx3) targeting mutant ataxin-3 upon brain injection being investigated. For this purpose, the vectors were injected in the mouse striata, and neuronal dysfunction, degeneration, gliosis, off-target effects, and saturation of the RNA interference machinery were evaluated. It was found that: (1) LV-shmutatx3 mediated stable and long-term expression of the shRNA in neurons of the mouse striatum; (2) neuronal dysfunction evaluated by darpp-32, NeuN, and cresyl violet staining, initially more pronounced, became indistinguishable from the phosphate-buffered saline group at 8 weeks and resolved within 20 weeks; (3) astrocytic activation was present, which resolved within 8 weeks; (4) microglial activity and proinflammatory cytokines release were present, which resolved and normalized within 20 weeks; and (5) there were no off-target effects or saturation of the endogenous RNA interference processing machinery in the mouse striatum. The data show that injection of lentiviral vectors encoding a shRNA targeting mutant ataxin-3 in the mouse brain induce transient dysfunctions, which resolve within 20 weeks. Importantly, long-term expression (up to 20 weeks post injection) of this shRNA (driven by H1 promoter) led to no toxic effect in vivo. This study thus constitutes an additional step in a future translation of gene silencing as a therapy for MJD.


Assuntos
Ataxina-3/genética , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/terapia , Interferência de RNA , RNA Interferente Pequeno , Reparo Gênico Alvo-Dirigido , Animais , Astrócitos/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Inativação Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Masculino , Camundongos , Microglia/metabolismo , Mutação , Neurônios/metabolismo , RNA Mensageiro/genética , Reparo Gênico Alvo-Dirigido/métodos , Fatores de Tempo , Transdução Genética , Transgenes
20.
Genomics ; 111(4): 560-566, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29605634

RESUMO

The ability to direct the CRISPR/Cas9 nuclease to a unique target site within a genome would have broad use in targeted genome engineering. However, CRISPR RNA is reported to bind to other genomic locations that differ from the intended target site by a few nucleotides, demonstrating significant off-target activity. We have developed the CRISPcut tool that screens the off-targets using various parameters and predicts the ideal genomic target for -guide RNAs in human cell lines. sgRNAs for four different types of Cas9 nucleases can be designed with an option for the user to work with different PAM sequences. Direct experimental measurement of genome-wide DNA accessibility is incorporated that effectively restricts the prediction of CRISPR targets to open chromatin. An option to predict target sites for paired CRISPR nickases is also provided. The tool has been validated using a dataset of experimentally used sgRNA and their identified off-targets. URL: http://web.iitd.ac.in/crispcut.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Software , Reparo Gênico Alvo-Dirigido/métodos , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Cromatina/química , Humanos , Motivos de Nucleotídeos , RNA Guia de Cinetoplastídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA